首页> 外文OA文献 >Photonic bandgap materials: design, fabrication, and characterization
【2h】

Photonic bandgap materials: design, fabrication, and characterization

机译:光子带隙材料:设计,制造和表征

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The last few decades have seen a tremendous explosion in the area of new synthetic materials. As we begin to better understand the nature of the atomic and molecular bonds it has been possible to systematically search for materials with specific properties thanks to the availability of powerful supercomputers. Due to significant advances in materials synthesis a rich variety of artificial materials whose mechanical, chemical, electronic and optical properties can be suitably tailored can now be produced. Some of the materials (plastics, synthetic fibers, ceramics, alloys etc.) can replace or substitute traditional materials; some others have managed to create new applications themselves (semiconductors, superconductors, optical fibers etc.). Over the last decade there has been a growing interest in a new material called \u22photonic bandgap structures\u22 which can manipulate light in an extraordinary way opening up new possibilities in the area of optics and optoelectronics, eventually paving the way for optical computing. Proof of principle structures that demonstrates the expected property has been successfully fabricated for low frequency electromagnetic waves. However, making photonic bandgap structures that can operate at visible frequency is quite challenging. This is because photonic bandgap material are essentially periodic dielectric structures where the periodicity is on the order of the wavelength of light. The goal of this dissertation is to develop a technique for the fabrication inverse FCC photonic crystals that can operate at the visible and near infrared frequencies. The technique essentially focuses on employing self organizing systems such as monodisperse colloidal systems of polystyrene microspheres as a basis for forming periodic structure at submicron dimensions. The main aspects are first to show that the experimental procedure for fabrication developed in this dissertation actually has the desired structural property. Demonstration of structural properties is done by means of optical microscopy and scanning electron microscopy. The other aspect is to demonstrate that the photonic structure so produced indeed shows effects due to photonic bandgap. Optical spectroscopy of the samples is used to show that these samples indeed show the pseudogap that has been theoretically predicted for photonic crystals made with the materials used.
机译:在过去的几十年中,新型合成材料领域发生了巨大的爆炸。随着我们开始更好地了解原子和分子键的性质,由于强大的超级计算机的可用性,有可能系统地搜索具有特定性质的材料。由于材料合成方面的重大进步,现在可以生产各种人造材料,这些人造材料的机械,化学,电子和光学性能可以适当调整。某些材料(塑料,合成纤维,陶瓷,合金等)可以替代或替代传统材料。其他一些则设法自己创建了新的应用程序(半导体,超导体,光纤等)。在过去的十年中,人们对新型材料“光子带隙结构”的兴趣与日俱增,该材料可以以非凡的方式操纵光,从而在光学和光电子学领域开辟了新的可能性,最终为光学计算铺平了道路。已经成功地制造出用于低频电磁波的证明预期特性的原理结构证明。然而,制造可以在可见频率下工作的光子带隙结构是非常具有挑战性的。这是因为光子带隙材料实质上是周期性的介电结构,其中周期性在光的波长的数量级上。本文的目的是开发一种能够在可见光和近红外频率下工作的逆FCC光子晶体的制造技术。该技术主要集中在采用自组织系统,例如聚苯乙烯微球的单分散胶体系统,作为形成亚微米尺寸周期性结构的基础。主要方面是首先表明,本文开发的制造实验程序实际上具有所需的结构性能。结构特性的证明是通过光学显微镜和扫描电子显微镜进行的。另一个方面是证明如此产生的光子结构确实显示出由于光子带隙而产生的效应。样品的光谱学用来表明这些样品确实显示出假间隙,该假间隙在理论上已被预测为使用所用材料制成的光子晶体。

著录项

  • 作者

    Subramania, Ganapathi S.;

  • 作者单位
  • 年度 2000
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号